75 research outputs found

    Biomolecule-assisted exfoliation and dispersion of graphene and other two-dimensional materials: a review of recent progress and applications

    Get PDF
    Direct liquid-phase exfoliation of layered materials by means of ultrasound, shear forces or electrochemical intercalation holds enormous promise as a convenient, cost-effective approach to the mass production of two-dimensional (2D) materials, particularly in the form of colloidal suspensions of high quality and micrometer- and submicrometer-sized flakes. Of special relevance due to environmental and practical reasons is the production of 2D materials in aqueous medium, which generally requires the use of certain additives (surfactants and other types of dispersants) to assist in the exfoliation and colloidal stabilization processes. In this context, biomolecules have received, in recent years, increasing attention as dispersants for 2D materials, as they provide a number of advantages over more conventional, synthetic surfactants. Here, we review research progress in the use of biomolecules as exfoliating and dispersing agents for the production of 2D materials. Although most efforts in this area have focused on graphene, significant advances have also been reported with transition metal dichalcogenides (MoS2, WS2, etc.) or hexagonal boron nitride. Particular emphasis is placed on the specific merits of different types of biomolecules, including proteins and peptides, nucleotides and nucleic acids (RNA, DNA), polysaccharides, plant extracts and bile salts, on their role as efficient colloidal dispersants of 2D materials, as well as on the potential applications that have been explored for such biomolecule-exfoliated materials. These applications are wide-ranging and encompass the fields of biomedicine (photothermal and photodynamic therapy, bioimaging, biosensing, etc.), energy storage (Li- and Na-ion batteries), catalysis (e.g., catalyst supports for the oxygen reduction reaction or electrocatalysts for the hydrogen evolution reaction), or composite materials. As an incipient area of research, a number of knowledge gaps, unresolved issues and novel future directions remain to be addressed for biomolecule-exfoliated 2D materials, which will be discussed in the last part of this review.Financial support from the Spanish MINECO and the European Regional Development Fund (ERDF) through project MAT2015-69844-R as well as from “Plan de Ciencia, Tecnología e Innovación 2013-2017 del Principado de Asturias” and ERDF (project GRUPIN14-056) is gratefully acknowledged.Peer reviewe

    Heterogenity of Graphite Oxide Particles Obtained with Wet Oxidative Exfoliation

    Get PDF
    Wet oxidative exfoliation of graphite is one of the most frequently applied techniques to obtain aqueous dispersions of hydrophilic graphene derivatives as required, e.g., in 3D printing, wet spinning or film casting. Due to the harsh conditions of the process, the resulting suspension is a mixture of particles with a wide distribution range both of physical dimensions and chemical properties. An aqueous graphite oxide suspension was obtained by an improved Hummers method and separated into five fractions by controlled centrifugation. The fractions were characterized and compared by various methods, revealing their diversity in size, chemical properties and application-related viscosity. The characterization methods (powder XRD, Raman spectroscopy, ATR-FTIR spectroscopy, XPS, potentiometric titration, rheology) exhibited subtle but measurable differences that exceeded the standard deviation of the techniques employed, but no systematic trend was found across the fractions in any of the properties investigated. The conditions of our centrifugal separation hardly meet the constrains of the ideal of Stokes’s law, the polydispersity of the high aspect ratio particles as well as their concentration close to the percolation limit challenge the independent sedimentation of the platelets

    From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration

    Get PDF
    Producción CientíficaHigh temperature annealing is the only method known to date that allows the complete repair of a defective lattice of graphenes derived from graphite oxide, but most of the relevant aspects of such restoration processes are poorly understood. Here, we investigate both experimentally (scanning probe microscopy) and theoretically (molecular dynamics simulations) the thermal evolution of individual graphene oxide sheets, which is rationalized on the basis of the generation and the dynamics of atomic vacancies in the carbon lattice. For unreduced and mildly reduced graphene oxide sheets, the amount of generated vacancies was so large that they disintegrated at 1773–2073 K. By contrast, highly reduced sheets survived annealing and their structure could be completely restored at 2073 K. For the latter, a minor atomic-sized defect with six-fold symmetry was observed and ascribed to a stable cluster of nitrogen dopants. The thermal behavior of the sheets was significantly altered when they were supported on a vacancy-decorated graphite substrate, as well as for the overlapped/stacked sheets. In these cases, a net transfer of carbon atoms between neighboring sheets via atomic vacancies takes place, affording an additional healing process. Direct evidence of sheet coalescence with the step edge of the graphite substrate was also gathered from experiments and theory.Ministerio de Economía, Industria y Competitividad (Project AT2011-26399 and MAT2011-22781)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA158A11-2

    Impact of Covalent Functionalization on the Aqueous Processability, Catalytic Activity, and Biocompatibility of Chemically Exfoliated MoS2 Nanosheets

    Get PDF
    Chemically exfoliated MoS2 (ce-MoS2) has emerged in recent years as an attractive two-dimensional material for use in relevant technological applications, but fully exploiting its potential and versatility will most probably require the deployment of appropriate chemical modification strategies. Here, we demonstrate that extensive covalent functionalization of ce-MoS2 nanosheets with acetic acid groups (∼0.4 groups grafted per MoS2 unit) based on the organoiodide chemistry brings a number of benefits in terms of their processability and functionality. Specifically, the acetic acid-functionalized nanosheets were furnished with long-term (>6 months) colloidal stability in aqueous medium at relatively high concentrations, exhibited a markedly improved temporal retention of catalytic activity toward the reduction of nitroarenes, and could be more effectively coupled with silver nanoparticles to form hybrid nanostructures. Furthermore, in vitro cell proliferation tests carried out with murine fibroblasts suggested that the chemical derivatization had a positive effect on the biocompatibility of ce-MoS2. A hydrothermal annealing procedure was also implemented to promote the structural conversion of the functionalized nanosheets from the 1T phase that was induced during the chemical exfoliation step to the original 2H phase of the starting bulk material, while retaining at the same time the aqueous colloidal stability afforded by the presence of the acetic acid groups. Overall, by highlighting the benefits of this type of chemical derivatization, the present work should contribute to strengthen the position of ce-MoS2 as a two-dimensional material of significant practical utility.Financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) and the European Regional Development Fund (FEDER) through project MAT2015-69844-R is gratefully acknowledged, as well as partial support of the ERDF/FEDER. Operative Program of the Región de Murcia 2007–2013. We also acknowledge partial funding by Plan de Ciencia, Tecnología e Innovación 2013-2017 del Principado de Asturias and FEDER through grant GRUPIN14-056.Peer reviewe

    Consequences of Nitrogen Doping and Oxygen Enrichment on Titanium Local Order and Photocatalytic Performance of TiO2 Anatase

    Get PDF
    This work was financially supported by Spanish MINECO (MAT2013-40950-R, MAT2016-78155-C2-1-R, and CTQ2014-52956-C3-1-R), Gobierno del Principado de Asturias (GRUPIN14-060 and GRUPIN14-078), FEDER and South Ural State University thanks for the support the Ministry of Education and Science of the Russian Federation (grant No 16.2674.2014/K

    Efficient Pt electrocatalysts supported onto flavin mononucleotide–exfoliated pristine graphene for the methanol oxidation reaction

    Get PDF
    Due to its large surface area, high electrical conductivity as well as mechanical and thermal stability, pristine graphene has the potential to be an excellent support for metal nanoparticles (NPs), but the scarce amount of intrinsic chemical groups/defects in its structure that could act as anchoring sites for the NPs hinders this type of use. Here, a simple strategy based on the stabilization of pristine graphene in aqueous dispersion with the assistance of a low amount of flavin mononucleotide (FMN) is shown to yield a material that combines high electrical conductivity and abundance of extrinsic anchoring sites, so that pristine graphene–metal (Pd and Pt) NP hybrids with good dispersion and metal loading can be obtained from FMN–stabilized graphene. The activity of these hybrids towards the methanol oxidation reaction (MOR) both in acidic and alkaline media is studied by cyclic voltammetry (CV) and their stability investigated by chronoamperometry. The pristine graphene–Pt NP hybrid prepared by this simple, eco–friendly protocol is demonstrated to outperform most previously reported pristine graphene– and reduced graphene oxide–metal NP hybrids as electrocatalyst for the MOR, both in terms of catalytic activity and stability, avoiding at the same time the use of harsh chemicals or complex synthetic routes.Financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) and the European Regional Development Fund (FEDER) through projects MAT2015-69844-R and MAT2016-76595-R is gratefully acknowledged. We also acknowledge partial funding by Plan de Ciencia, Tecnología e Innovación 2013-2017 del Principado de Asturias and FEDER through grant GRUPIN14-056. M.A-V. is thankful to MINECO and for his pre-doctoral contract. R.R.R acknowledges financial support from MINECO through “Juan de la Cierva” program (JCI-2012-12664)

    High Performance Na-O2 Batteries and Printed Microsupercapacitors Based on Water-Processable, Biomolecule-Assisted Anodic Graphene

    Get PDF
    Integrated approaches that expedite the production and processing of graphene into useful structures and devices, particularly through simple and environmentally friendly strategies, are highly desirable in the efforts to implement this two-dimensional material in state-of-the-art electrochemical energy storage technologies. Here, we introduce natural nucleotides (e.g., adenosine monophosphate) as bifunctional agents for the electrochemical exfoliation and dispersion of graphene nanosheets in water. Acting both as exfoliating electrolytes and colloidal stabilizers, these biomolecules facilitated access to aqueous graphene bio-inks that could be readily processed into aerogels and inkjet-printed interdigitated patterns. Na-O2 batteries assembled with the graphene-derived aerogels as the cathode and a glyme-based electrolyte exhibited a full discharge capacity of ∼3.8 mAh cm–2 at a current density of 0.2 mA cm–2. Moreover, shallow cycling experiments (0.5 mAh cm–2) boasted a capacity retention of 94% after 50 cycles, which outperformed the cycle life of prior graphene-based cathodes for this type of battery. The positive effect of the nucleotide-adsorbed nanosheets on the battery performance is discussed and related to the presence of the phosphate group in these biomolecules. Microsupercapacitors made from the interdigitated graphene patterns as the electrodes also displayed a competitive performance, affording areal and volumetric energy densities of 0.03 μWh cm–2 and 1.2 mWh cm–3 at power densities of 0.003 mW cm–2 and 0.1 W cm–3, respectively. Taken together, by offering a green and straightforward route to different types of functional graphene-based materials, the present results are expected to ease the development of novel energy storage technologies that exploit the attractions of graphene.Funding by the Spanish Ministerio de Economía y Competitividad (MINECO) and the European Regional Development Fund (ERDF) through project MAT2015-69844-R and by the Spanish Ministerio de Ciencia, Innovación y Universidades and ERDF through project RTI2018-100832-B-I00 is gratefully acknowledged. Partial funding by Plan de Ciencia, Tecnología e Innovación (PCTI) 2013-2017 del Principado de Asturias and the ERDF through project IDI/2018/000233 is also acknowledged. J.M.M. is grateful to the Spanish Ministerio de Educación, Cultura y Deporte (MECD) for his pre-doctoral contract (FPU14/00792). J.N.C. acknowledges the ERC Adv. Gr. FUTUREPRINT. This work was also financially supported by the European Union (Graphene Flagship, Core 2, Grant number 785219).Peer reviewe

    Grafting of adipic anhydride to carbon nanotubes through a Diels-Alder cycloaddition/oxidation cascade reaction

    Get PDF
    Accepted ManuscriptDifferent reactions have been reported for the successful functionalization of carbon nanotubes (CNT). The Diels-Alder cycloaddition is recognized as a plausible chemical approach, but few reports are known where this strategy has been used. In this study, the functionalization was performed by 1,3-butadiene generated from 3-sulfolene under heating conditions in diglyme. This simple and easily scalable method resulted in functionalized CNT with mass losses of 10 - 23 % by thermogravimetric analysis (nitrogen atmosphere). The functionalization was also supported by acid-base titration, elemental analysis, temperature programmed desorption and X-ray photoelectron spectroscopy. The high content in oxygen detected on the CNT surface was assigned to anhydride formation due to a cascade oxidation of the alkene groups generated in the cycloaddition reaction. The complete evolution of the alkene leads to a grafting density of 4.2 mmol g-1 for the anhydride moiety. Ab-initio calculations in CNT model systems indicate that the Diels-Alder addition of butadiene is a feasible process and that subsequent oxidation reactions may result in the formation of the anhydride moiety. The presence of the anhydride group is a valuable asset for grafting a multitude of complex molecules, namely through the nucleophilic addition of amines.Centro de Química and Instituto de Polímeros e Compósitos of the University of Minho and Fundação para a Ciência e Tecnologia (FCT) through the Portuguese NMR network (RNRMN), the Project F-COMP-01-0124-FEDER-022716 (ref. FCT PEst-C/QUI/UI0686/2011) FEDER-COMPETE, Project PEst-C/CTM/LA0025/2013 (Strategic Project - LA 25-2013-2014) and also Project Scope UID/CEC/00319/2013. TG Castro acknowledges FCT for a doctoral grant (SFRH/BD/79195/2011) RF Araújo for a Post-doc grant (SFRH/BPD/88920/2012) and MMF also acknowledges FCT through the program Ciência 2008. Access to computing resources funded by the Project "Search-ON2: Revitalization of HPC infrastructure of UMinho" (NORTE-07-0162-FEDER-000086) is also gratefully acknowledged

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden
    corecore